RSS

Universe

07 Jul

Group 4

UNIVERSE

This word usually use to explain all around objects, The universe is generally defined as the totality of object that exists, including planets, stars, galaxies, space, matter.
The term universe may be used in slightly different contextual senses, denoting such concepts as the cosmos, the world, or nature.

HISTORY

Throughout recorded history, several cosmologies and cosmogonies have been proposed to account for observations of the universe. The earliest quantitative geocentric models were developed by the ancient Greeks, who proposed that the universe possesses infinite space and has existed eternally, but contains a single set of concentric spheres of finite size – corresponding to the fixed stars, the Sun and various planets – rotating about a spherical but unmoving Earth. Over the centuries, more precise observations and improved theories of gravity led to Copernicus’sheliocentric model and the Newtonian model of the Solar System, respectively. Further improvements in astronomy led to the realization that the Solar System is embedded in a galaxy composed of billions of stars, the Milky Way, and that other galaxies exist outside it, as far as astronomical instruments can reach. Careful studies of the distribution of these galaxies and their spectral lines have led to much of modern cosmology. Discovery of the red shift and cosmic microwave background radiation revealed that the universe is expanding and apparently had a beginning.

According to the prevailing scientific model of the universe, known as the Big Bang, This asserts that some 12-15 billion years ago there was a suddenly expansion and explosion of all matter and energy out of an original point – out of literally nothing – and that not only space but even time began at this moment.  (So we cannot speak of an explosion in space – because there was no space before, or no time at which this could be measured – space and time being properties of the universe rather than something outside of it).

There used to be some rivalry between the Big Bang and so-called the Steady State theory, but the latter has now been rejected by almost everyone (apart from a few mavericks like Fred Hoyle).  In fact, recent discoveries indicate that the universe is not only expanding, but it’s its rate of expansion is increasing!

The strongest evidence for the Big Bang hypothesis is the existence of the microwave background radiation (the temerature everywhere in space is about 3 degrees above absolute zero).   This is thought to be the “echo” of the Big Bang, all that remains of the original fireball.

Solar System

The Solar System consists of the Sun and the astronomical objects bound to it by gravity, all of which formed from the collapse of a giant molecular cloud approximately 4.6 billion years ago. Of the many objects that orbit the Sun, most of the mass is contained within eight relatively solitary planets whose orbits are almost circular and lie within a nearly flat disc called the ecliptic plane. The four smaller inner planets, Mercury, Venus, Earth and Mars, also called the terrestrial planets, are primarily composed of rock and metal. The four outer planets, the gas giants, are substantially more massive than the terrestrials. The two largest, Jupiter and Saturn, are composed mainly of hydrogen and helium; the two outermost planets, Uranus and Neptune, are composed largely of ices, such as water, ammonia and methane, and are often referred to separately as “ice giants”.

The Solar System is also home to two regions populated by smaller objects. The asteroid belt, which lies between Mars and Jupiter, is similar to the terrestrial planets as it is composed mainly of rock and metal. Beyond Neptune’s orbit lie trans-Neptunian objects composed mostly of ices such as water, ammonia and methane. Within these two regions, five individual objects, Ceres, Pluto, Haumea, Makemake and Eris, are recognized to be large enough to have been rounded by their own gravity, and are thus termed dwarf planets. In addition to thousands of small bodiesin those two regions, various other small body populations, such as comets, centaurs and interplanetary dust, freely travel between regions.

The solar wind, a flow of plasma from the Sun, creates a bubble in the interstellar medium known as the heliosphere, which extends out to the edge of the scattered disc. The hypothetical Oort cloud, which acts as the source for long-period comets, may also exist at a distance roughly a thousand times further than the heliosphere.

Six of the planets and three of the dwarf planets are orbited by natural satellites,[b] usually termed “moons” after Earth’s Moon. Each of the outer planets is encircled by planetary rings of dust and other particles.

Inner Solar System

The inner Solar System is the traditional name for the region comprising the terrestrial planets and asteroids. Composed mainly of silicates and metals, the objects of the inner Solar System are relatively close to the Sun; the radius of this entire region is shorter than the distance between Jupiter and Saturn.

Inner planets

The inner planets. From left to right: Mercury, Venus, Earth, and Mars (sizes to scale, interplanetary distances not)

The four inner or terrestrial planets have dense, rocky compositions, few or no moons, and no ring systems. They are composed largely of refractory minerals, such as the silicates, which form their crusts and mantles, and metals such as iron and nickel, which form their cores. Three of the four inner planets (Venus, Earth and Mars) have atmospheres substantial enough to generate weather; all have impact craters and tectonic surface features such as rift valleys and volcanoes. The term inner planet should not be confused with inferior planet, which designates those planets that are closer to the Sun than Earth is (i.e. Mercury and Venus).

Mercury

Mercury (0.4 AU from the Sun) is the closest planet to the Sun and the smallest planet in the Solar System (0.055 Earth masses). Mercury has no natural satellites, and its only known geological features besides impact craters are lobed ridges or rupes, probably produced by a period of contraction early in its history. Mercury’s almost negligible atmosphere consists of atoms blasted off its surface by the solar wind. Its relatively large iron core and thin mantle have not yet been adequately explained. Hypotheses include that its outer layers were stripped off by a giant impact, and that it was prevented from fully accreting by the young Sun’s energy.

Venus

Venus (0.7 AU from the Sun) is close in size to Earth (0.815 Earth masses), and, like Earth, has a thick silicate mantle around an iron core, a substantial atmosphere and evidence of internal geological activity. However, it is much drier than Earth and its atmosphere is ninety times as dense. Venus has no natural satellites. It is the hottest planet, with surface temperatures over 400 °C, most likely due to the amount of greenhouse gases in the atmosphere. No definitive evidence of current geological activity has been detected on Venus, but it has no magnetic field that would prevent depletion of its substantial atmosphere, which suggests that its atmosphere is regularly replenished by volcanic eruptions.

Earth

Earth (1 AU from the Sun) is the largest and densest of the inner planets, the only one known to have current geological activity, and is the only place in the universe where life is known to exist.[38] Its liquid hydrosphere is unique among the terrestrial planets, and it is also the only planet where plate tectonics has been observed. Earth’s atmosphere is radically different from those of the other planets, having been altered by the presence of life to contain 21% free oxygen.[39] It has one natural satellite, the Moon, the only large satellite of a terrestrial planet in the Solar System.

Mars

Mars (1.5 AU from the Sun) is smaller than Earth and Venus (0.107 Earth masses). It possesses an atmosphere of mostly carbon dioxide with a surface pressure of 6.1 millibars (roughly 0.6 percent that of the Earth’s).[40] Its surface, peppered with vast volcanoes such as Olympus Mons and rift valleys such as VallesMarineris, shows geological activity that may have persisted until as recently as 2 million years ago.[41] Its red colour comes from iron oxide (rust) in its soil.[42] Mars has two tiny natural satellites (Deimos and Phobos) thought to be captured asteroids.[43]

Asteroid belt

Asteroids are mostly small Solar System bodiescomposed mainly of refractory rocky and metallic minerals.

The main asteroid belt occupies the orbit between Mars and Jupiter, between 2.3 and 3.3 AU from the Sun. It is thought to be remnants from the Solar System’s formation that failed to coalesce because of the gravitational interference of Jupiter.

Asteroids range in size from hundreds of kilometres across to microscopic. All asteroids save the largest, Ceres, are classified as small Solar System bodies, but some asteroids such as Vesta and Hygiea may be reclassed as dwarf planets if they are shown to have achieved hydrostatic equilibrium.

The asteroid belt contains tens of thousands, possibly millions, of objects over one kilometre in diameter. Despite this, the total mass of the main belt is unlikely to be more than a thousandth of that of the Earth.The main belt is very sparsely populated; spacecraft routinely pass through without incident. Asteroids with diameters between 10 and 10−4 m are called meteoroids.

Outer Solar System

The outer region of the Solar System is home to the gas giants and their large moons. Many short period comets, including the centaurs, also orbit in this region. Due to their greater distance from the Sun, the solid objects in the outer Solar System contain a higher proportion of volatiles such as water, ammonia and methane, than the rocky denizens of the inner Solar System, as the colder temperatures allow these compounds to remain solid.

Jupiter

Jupiter (5.2 AU), at 318 Earth masses, is 2.5 times the mass of all the other planets put together. It is composed largely of hydrogen and helium. Jupiter’s strong internal heat creates a number of semi-permanent features in its atmosphere, such as cloud bands and the Great Red Spot.

Jupiter has 63 known satellites. The four largest, Ganymede, Callisto, Io, and Europa, show similarities to the terrestrial planets, such as volcanism and internal heating.[55] Ganymede, the largest satellite in the Solar System, is larger than Mercury.

Saturn

Saturn (9.5 AU), distinguished by its extensive ring system, has several similarities to Jupiter, such as its atmospheric composition and magnetosphere. Although Saturn has 60% of Jupiter’s volume, it is less than a third as massive, at 95 Earth masses, making it the least dense planet in the Solar System. The rings of Saturn are made up of small ice and rock particles.

Saturn has 62 confirmed satellites; two of which, Titan and Enceladus, show signs of geological activity, though they are largely made of ice.[56] Titan, the second largest moon in the Solar System, is larger than Mercury and the only satellite in the Solar System with a substantial atmosphere.

Uranus

Uranus (19.6 AU), at 14 Earth masses, is the lightest of the outer planets. Uniquely among the planets, it orbits the Sun on its side; its axial tilt is over ninety degrees to the ecliptic. It has a much colder core than the other gas giants, and radiates very little heat into space.[57]

Uranus has 27 known satellites, the largest ones being Titania, Oberon, Umbriel, Ariel and Miranda.

Neptune

Neptune (30 AU), though slightly smaller than Uranus, is more massive (equivalent to 17 Earths) and therefore more dense. It radiates more internal heat, but not as much as Jupiter or Saturn.[58]

Neptune has 13 known satellites. The largest, Triton, is geologically active, with geysers of liquid nitrogen.[59] Triton is the only large satellite with a retrograde orbit. Neptune is accompanied in its orbit by a number of minor planets, termed Neptune Trojans, that are in 1:1 resonance with it.

Comets

Comets are small Solar System bodies, typically only a few kilometres across, composed largely of volatile ices. They have highly eccentric orbits, generally a perihelion within the orbits of the inner planets and an aphelion far beyond Pluto. When a comet enters the inner Solar System, its proximity to the Sun causes its icy surface to sublimate and ionise, creating a coma: a long tail of gas and dust often visible to the naked eye.

Short-period comets have orbits lasting less than two hundred years. Long-period comets have orbits lasting thousands of years. Short-period comets are believed to originate in the Kuiper belt, while long-period comets, such as Hale-Bopp, are believed to originate in the Oort cloud. Many comet groups, such as the KreutzSungrazers, formed from the breakup of a single parent.[60] Some comets with hyperbolic orbits may originate outside the Solar System, but determining their precise orbits is difficult. Old comets that have had most of their volatiles driven out by solar warming are often categorised as asteroids.

Topic   : Universe
Leader : Ahmad Sholih

  1. Edwin Candra Kresna
  2. Andrian Setiawan
  3. Ridwan Alamsyah
  4. Desi Aryani Sandi Nusa
  5. Dian Angriani Lalimbat
  6. Sri Esdawanty
  7. Erizal
  8. Masnawir Kaluku
  9. Sumarno Nasibu
  10. Hindi mokodompit
  11. Rizal Yunus
  12. Simon
  13. Tomas
  14. Rist
  15. Sandra
  16. Dadan
  17. Ridwan
  18. Ahmad Sholih
  19. Fariz
  20. Kamdani
  21. Nurul
  22. Han-han
 
Comments Off on Universe

Posted by on July 7, 2011 in Uncategorized

 

Comments are closed.